无人机(无人驾驶飞机)动态包围是一个具有巨大潜力的新兴领域。研究人员通常会从生物系统中获得灵感,要么是从宏观世界(如鱼类学校或鸟类羊群)或类似基因调节网络等微世界的灵感。但是,大多数群体控制算法都取决于集中控制,全球信息获取或相邻代理之间的通信。在这项工作中,我们提出了一种纯粹基于视觉的分布式群体控制方法,而没有任何直接通信,例如,群体的代理无人机可以生成一个陷入的模式,以完全基于其安装的全向视觉传感器包围无人机的逃脱目标。还设计了描述每种无人机行为模型的有限状态机器,以便一群无人机可以集体地搜索和捕获目标。我们在各种模拟和现实实验中验证了所提出方法的有效性和效率。
translated by 谷歌翻译
虽然现代形象翻译技术可以创造光电态合成图像,但它们具有有限的风格可控性,因此可能遭受翻译误差。在这项工作中,我们表明激活功能是控制图像合成方向的重要组件之一。具体地,我们明确证明整流器的斜率参数可以改变数据分布并独立使用以控制翻译方向。为了提高风格可控性,提出了两种简单但有效的技术,包括自适应Relu(Adarelu)和结构自适应功能。 Adarelu可以根据目标风格动态调整斜率参数,并且可以用于通过与自适应实例归一化(Adain)组合来提高可控性。同时,结构适应性功能使整流器能够更有效地操纵特征图的结构。它由所提出的结构卷积(Struconv)组成,一种有效的卷积模块,可以根据AADAIN指定的平均值和方差选择要激活的区域。广泛的实验表明,所提出的技术可以大大提高基于风格的图像转换任务的网络可控性和输出分集。
translated by 谷歌翻译
While generative models produce high-quality images of concepts learned from a large-scale database, a user often wishes to synthesize instantiations of their own concepts (for example, their family, pets, or items). Can we teach a model to quickly acquire a new concept, given a few examples? Furthermore, can we compose multiple new concepts together? We propose Custom Diffusion, an efficient method for augmenting existing text-to-image models. We find that only optimizing a few parameters in the text-to-image conditioning mechanism is sufficiently powerful to represent new concepts while enabling fast tuning (~6 minutes). Additionally, we can jointly train for multiple concepts or combine multiple fine-tuned models into one via closed-form constrained optimization. Our fine-tuned model generates variations of multiple, new concepts and seamlessly composes them with existing concepts in novel settings. Our method outperforms several baselines and concurrent works, regarding both qualitative and quantitative evaluations, while being memory and computationally efficient.
translated by 谷歌翻译
In the current person Re-identification (ReID) methods, most domain generalization works focus on dealing with style differences between domains while largely ignoring unpredictable camera view change, which we identify as another major factor leading to a poor generalization of ReID methods. To tackle the viewpoint change, this work proposes to use a 3D dense pose estimation model and a texture mapping module to map the pedestrian images to canonical view images. Due to the imperfection of the texture mapping module, the canonical view images may lose the discriminative detail clues from the original images, and thus directly using them for ReID will inevitably result in poor performance. To handle this issue, we propose to fuse the original image and canonical view image via a transformer-based module. The key insight of this design is that the cross-attention mechanism in the transformer could be an ideal solution to align the discriminative texture clues from the original image with the canonical view image, which could compensate for the low-quality texture information of the canonical view image. Through extensive experiments, we show that our method can lead to superior performance over the existing approaches in various evaluation settings.
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译
In this paper, we propose a novel framework dubbed peer learning to deal with the problem of biased scene graph generation (SGG). This framework uses predicate sampling and consensus voting (PSCV) to encourage different peers to learn from each other, improving model diversity and mitigating bias in SGG. To address the heavily long-tailed distribution of predicate classes, we propose to use predicate sampling to divide and conquer this issue. As a result, the model is less biased and makes more balanced predicate predictions. Specifically, one peer may not be sufficiently diverse to discriminate between different levels of predicate distributions. Therefore, we sample the data distribution based on frequency of predicates into sub-distributions, selecting head, body, and tail classes to combine and feed to different peers as complementary predicate knowledge during the training process. The complementary predicate knowledge of these peers is then ensembled utilizing a consensus voting strategy, which simulates a civilized voting process in our society that emphasizes the majority opinion and diminishes the minority opinion. This approach ensures that the learned representations of each peer are optimally adapted to the various data distributions. Extensive experiments on the Visual Genome dataset demonstrate that PSCV outperforms previous methods. We have established a new state-of-the-art (SOTA) on the SGCls task by achieving a mean of \textbf{31.6}.
translated by 谷歌翻译